What is Pain and What is Happening When We feel It?

What is pain? It might seem like an easy question. The answer, however, depends on who you ask.

Pain doesn’t originate at the site as most think, it’s created by the brain so we protect the area that’s in danger.

Some say pain is a warning signal that something is damaged, but what about pain-free major trauma? Some say pain is the body’s way of telling you something is wrong, but what about phantom limb pain, where the painful body part is not even there?

Pain scientists are reasonably agreed that pain is an unpleasant feeling in our body that makes us want to stop and change our behaviour. We no longer think of pain as a measure of tissue damage – it doesn’t actually work that way even in highly controlled experiments. We now think of pain as a complex and highly sophisticated protective mechanism.

How does pain work?

Our body contains specialised nerves that detect potentially dangerous changes in temperature, chemical balance or pressure. These “danger detectors” (or “nociceptors”) send alerts to the brain, but they cannot send pain to the brain because all pain is made by the brain.

When you’re injured, the brain makes an educated guess which part of the body is in danger and produces the pain there.

Pain is not actually coming from the wrist you broke, or the ankle you sprained. Pain is the result of the brain evaluating information, including danger data from the danger detection system, cognitive data such as expectations, previous exposure, cultural and social norms and beliefs, and other sensory data such as what you see, hear and otherwise sense.

The brain produces pain. Where in the body the brain produces the pain is a “best guess scenario”, based on all the incoming data and stored information. Usually the brain gets it right, but sometimes it doesn’t. An example is referred pain in your leg when it is your back that might need the protecting.

It is pain that tells us not to do things – for example, not to lift with an injured hand, or not to walk with an injured foot. It is pain, too, that tells us to do things – see a physio, visit a GP, sit still and rest.

We now know that pain can be “turned on” or “turned up” by anything that provides the brain with credible evidence that the body is in danger and needs protecting.

All in your head?

So is pain all about the brain and not at all about the body? No, these “danger detectors” are distributed across almost all of our body tissues and act as the eyes of the brain.

When there is a sudden change in tissue environment – for example, it heats up, gets acidic (cyclists, imagine the lactic acid burn at the end of a sprint), is squashed, squeezed, pulled or pinched – these danger detectors are our first line of defence.

They alert the brain and mobilise inflammatory mechanisms that increase blood flow and cause the release of healing molecules from nearby tissue, thus triggering the repair process.

Local anaesthetic renders these danger detectors useless, so danger messages are not triggered. As such, we can be pain-free despite major tissue trauma, such as being cut into for an operation.

Just because pain comes from the brain, it doesn’t mean it’s all in your head. 

Inflammation, on the other hand, renders these danger detectors more sensitive, so they respond to situations that are not actually dangerous. For example, when you move an inflamed joint, it hurts a long way before the tissues of the joint are actually stressed.

Danger messages travel to the brain and are highly processed along the way, with the brain itself taking part in the processing. The danger transmission neurones that run up the spinal cord to the brain are under real-time control from the brain, increasing and decreasing their sensitivity according to what the brain suggests would be helpful.

So, if the brain’s evaluation of all available information leads it to conclude that things are truly dangerous, then the danger transmission system becomes more sensitive (called descending facilitation). If the brain concludes things are not truly dangerous, then the danger transmission system becomes less sensitive (called descending inhibition).

Danger evaluation in the brain is mindbogglingly complex. Many brain regions are involved, some more commonly that others, but the exact mix of brain regions varies between individuals and, in fact, between moments within individuals.

To understand how pain emerges into consciousness requires us to understand how consciousness itself emerges, and that is proving to be very tricky.

To understand how pain works in real-life people with real-life pain, we can apply a reasonably easy principle: any credible evidence that the body is in danger and protective behaviour would be helpful will increase the likelihood and intensity of pain. Any credible evidence that the body is safe will decrease the likelihood and intensity of pain. It is as simple and as difficult as that.

Implications

To reduce pain, we need to reduce credible evidence of danger and increase credible evidence of safety. Danger detectors can be turned off by local anaesthetic, and we can also stimulate the body’s own danger-reduction pathways and mechanisms. This can be done by anything that is associated with safety – most obviously accurate understanding of how pain really works, exercise, active coping strategies, safe people and places.

A very effective way to reduce pain is to make something else seem more important to the brain – this is called distraction. Only being unconscious or dead provide greater pain relief than distraction.

In chronic pain the sensitivity of the hardware (the biological structures) increases so the relationship between pain and the true need for protection becomes distorted: we become over-protected by pain.

This is one significant reason there is no quick fix for nearly all persistent pains. Recovery requires a journey of patience, persistence, courage and good coaching. The best interventions focus on slowly training our body and brain to be less protective.

This article was originally posted on https://theconversation.com/explainer-what-is-pain-and-what-is-happening-when-we-feel-it-49040

For more information and audio recordings discussing pain, follow this link.

Why Does Your Body Twitch As You're Falling Asleep?

If you’ve ever found yourself drifting off to sleep only to be woken by a vigorous, full-body twitch or jerk, then do not feel alarmed. You’re among the estimated 60 - 70 % of Americans who regularly experience a phenomenon known as a hypnic jerk—also known as a hypnagogic jerk, or sleep start—which strikes as a person falls into a deep sleep. Here’s what to know about it.

What do sleep jerks feel like?

Hypnic jerks—involuntary twitches or jolts which occur during the night—can affect people in different ways. Many people will sleep right through them, but for others, they are vigorous enough to wake them up.

Although there is no definite explanation for what causes hypnic jerks, people are more likely to suffer from them when they’re sleep deprived or anxious, or when they do sleep-impairing habits before going to bed, like drinking caffeine or doing exercise close to bedtime, says James Wilson, a U.K.-based sleep behavior and sleep environment expert. “For people who suffer from hypnic jerks, it’s awful,” he adds. “They worry about it before they go to bed, which makes it worse.”

Jacqui Paterson, who is 44 and lives in the U.K., says she has experienced these kinds of twitches on an almost-nightly basis for about three years.

“When I was about 41, I started getting insomnia, which I’d never had in my life before,” she says. “Initially, I was staying awake all night, but I now get these annoying jerks which wake me up exactly an hour after I fall asleep, like someone has set an alarm in my head. I seem to have replaced one evil with another.”

Paterson says the jerks come more regularly when she feels concerned or preoccupied. If she worries about them happening before she goes to bed, then it “almost guarantees” that she will suffer from them that night.

The jerks feel like a jolt or an electric shock, Paterson says. “I’ve heard people talk about getting a falling sensation when they drop off to sleep,” she says. “To me, the feeling is like that but on steroids. It’s like someone has come and slapped me. It’s a really shocking feeling, like jumping into freezing cold water. I always wake up feeling totally alert.”

What causes hypnic jerks?

Put simply, hypnic jerks are caused when one part of the brain tries to go to sleep more quickly than other parts of the brain.

“The complexity of going to sleep and waking up is incredible, and sometimes—particularly when we are sleep deprived—our brain doesn’t shut down normally, which means we get this sort of jerking movement when we’re in a light sleep,” says Wilson. Often, he adds, the brain tries to make sense of it, “which is when we imagine ourselves falling off the sidewalk, a cliff or in a hole.”

The reason why some people experience the twitches at such a predictable time is due to their circadian rhythm, or body clock, Wilson says. “Normally when we go to sleep, about half an hour later we go into a deep stage of sleep during which we wouldn’t get these hypnic jerks,” he says. “If someone is sleep deprived, as they go through the process of falling asleep, the brain will get stuck at the same point in time. Usually if we can help people address their sleep deprivation, the instances decrease or disappear altogether.”

How can you prevent sleep jerks from happening?

There are ways to limit the effects, particularly by making a conscious effort to sleep better. “Try and get in a good routine around sleep,” Wilson says. “Wake up at the same time every day, and wind down properly before going to bed, making sure the activities you do in the hour before going to sleep are relaxing to you. Like most issues surrounding sleep, preventing hypnic jerks is all about trying to solve that sleep deprivation.”

Wilson also suggests that if a person suffers from them at the same time every night, they could ask a housemate or family member to disturb their sleep about five minutes before the jerks tend to occur, either by encouraging them to turn over in bed or rustling something near them. Often, that will help stop the twitches from happening, he says.

 

This article originally appeared on time.com and was written by Kate Samuelson

Floatation Therapy: What to Expect When You Float

About 30 minutes into my 60-minute session, I was so relaxed I couldn’t tell if I was still breathing. Every once in a while, I’d have to remind myself that I had a body. Seriously.

I’m an eager guinea pig. When it comes to wellness-related stuff, I’ll try anything. If a friend swears by it, I’m in. I always learn something – even if it it’s “ummm … this is not for me.”

(My timing can be a little off, though. Case in point: trying a neti pot for the first time on my honeymoon.)

So when my sister told me how much she loved floatation therapy, I decided to try it. I had no idea there are so many float tank centers out there! I chose one nearby, a full-service spa where I could get a microdermabrasion facial after my float. (I should have scheduled the facial after the float – I’ll explain why in a minute.)

So if you’re curious about floatation therapy, here’s what to expect. You’ll spend 30 to 60 minutes submerged up to your chin (with your ears under water) in a tank of salt water that’s exactly 98.6 degrees (the same temperature of your body). It’ll be totally dark and totally quiet (unless you decide to have gentle music piped in). The idea is to drastically reduce environmental stimulation: temperature, touch, sight, sound – even gravity.
 

MENTAL BENEFITS

My Float.

About 30 minutes into my 60-minute session, I was so relaxed I couldn’t tell if I was still breathing. Every once in a while, I’d have to remind myself that I had a body. Seriously. You know that deep, heavy, effortless relaxation that you drift into right before you fall asleep? It was like that – only I never fell asleep. I hovered in that semi-conscious, in-between space. It was delicious.

That much said, the first 30 minutes were rough. I’m not claustrophobic, but I panicked when the lid came down over me. I felt like I was being buried alive. I’m not afraid of the dark, but the darkness spooked me. I kept opening and closing my eyes in the darkness. I love being in water, but at first I was flailing. The warm salt water was pleasant, but I couldn’t tell where my body ended and the water began. I know that’s the whole idea, but it freaked me out. I couldn’t get comfortable. My neck ached. My breathing was shallow and fast. I was a mess!

The key was surrender. I reminded myself to breathe. I slowed down my breath with simple pranayama, deepening each exhale. After a while, I calmed down. Slowly, slowly, I began to feel the weightlessness that float addicts rave about … it truly was a blissful out-of-body experience.

The Science.

Float tanks screen out nearly all external stimuli, giving your nervous system a break. It’s estimated that 90% of your brain function is spent dealing with environmental stimuli: everything you see, smell, taste, touch, and hear … all that stuff that’s busying your brain without you even knowing it. Studies have shown that when sensory stimuli is removed, your senses have less to process, and your mind is free to relax in a deep state of calm. It’s a powerful setting for meditation.

Here’s where it gets interesting: when the brain is deprived of external stimuli, sometimes it creates its own. This can result in the often-reported hallucinatory effects of floatation therapy. Some people report light dancing behind their eyelids; others hear a ringing in their ears or even music.
 

PHYSICAL BENEFITS

My Float.

When I got out of the tank, I felt like an alien taking her first steps on Earth. All those sensations that had been quieted were now very loud. The dim lights in the room were glowing magically. The sound of the water sloshing in the tank was tinkling in my ears. The firm pressure of the floor beneath my feet was like a massage. As I dried off with a super-soft sheet, my skin prickled and tingled and my muscles came back awake with fresh exuberance. It astonished me. I wondered how long this high would last.

Turns out, it lasted right up until the microdermabrasion started. It was a great facial, but I was literally gritting my teeth the whole time. With all my senses on fire, the “sanding” of my skin was almost excruciating. By the time I checked out and got back on my bicycle, that blissful otherworldly feeling I had when I rose from the tank was completely gone.

The Science.

Some argue that deep muscle relaxation and other physical sensations experienced in floatation therapy is due not to the tank or the sensory deprivation but to the magnesium salt solution of the water. (Think of the way an Epsom salt bath soothes aching muscles, and then multiply that times 10.)

As a holistic health treatment, athletes and people with minor physical injuries use floatation therapy to speed up the healing process and promote tissue regeneration. There’s also evidence that transdermal magnesium absorption promotes detoxification, stimulates hydration, relieves joint pain, and improves respiration.
 

THE VERDICT

Yay or Nay?

YAY! Floating was intense – more so than I thought it would be. It was an exploratory experience. I plan to try it again – my sense is that you need to try several floats before you know if it’s for you.

Tips & Tricks.

Follow your breath to calm yourself as soon as you get in the water. Use slow, deep breaths – especially on the exhale – to ease out of any mental anxiety or physical discomfort. And don’t schedule anything after your float – give yourself plenty of peaceful, uninterrupted, sensory-soft time to enjoy the effects.

This article originally appeared on booksforbetterliving.com and was written by KIRA ROARK. 

Feeling Sleepy? Have a Nap. It's Good For you!

Here's a very valid case to have a power nap. Experts say an after-lunch snooze is good for you and your productivity.

If you’ve ever felt the need to rest your head on your work desk to secretly get a few minutes of post-lunch shut-eye while the boss wasn’t watching, it turns out you’re not lazy or disinterested. In fact, you are very normal.

According to Moira Junge, sleep psychologist and member of the Sleep Health Foundation, we were designed to require an afternoon kip to get through the day.

“We are all pre-programmed to need a little nap in the afternoon, explains Junge. “What happens with our body’s sleep mechanisms is that we have a post-lunch dip in our system and have a propensity to sleep.”

Junge explains the ‘post-lunch dip’ in our 24-hour circadian rhythm is like a sleepy switch that just flicks on in the afternoon. It’s independent of what we eat and of the amount we’ve slept the night before. This dip also gets repeated at night around 11pm and is the reason why some of us ‘crash out’ around that time.

“We are all pre-programmed to need a little nap in the afternoon. What happens with our body’s sleep mechanisms is that we have a post-lunch dip in our system and have a propensity to sleep.”

But, says Junge, what’s unique about this afternoon napping signal is that it’s temporary. It lasts 30 minutes to 1.5 hours before we go back to feeling alert again.

“If you don’t get an opportunity for sleep, say if you are at work, you can cycle through this dip quickly as your body’s systems will rise again, with or without a sleep if you can just manage to stay awake through it.”

Professor Leon Lack from the School of Psychology at Flinders University is pro-power napping and says if we can, we should. He reminds me that our need to nap in the afternoon is the reason why siestas are an accepted practice in many countries and explains that napping is a natural human habit dating back hundreds of years.

“We’ve become so fixed in our cultural habits of having a single nighttime sleep,” Prof Lack tells SBS. “This idea is a reasonably recent cultural adaptation from the industrial revolution and because of the advent of electric lights.

“Over 300 years ago, when most people were rural farmers, you probably had naps in the middle of the day and stayed up a little later at night but only so long as the fires burned in your house.”

So let’s say one day, our workplaces radically changed to become pro-napping zones. How long a kip should we have on our desk before the alarm rings? Junge says the trick is for the nap to be very short: 20 minutes is ideal, with time dedicated for you to fall asleep.

“If you sleep more than 20 minutes, you get into that deep slow wave of sleep where you can’t hear anything or wake up and don’t know where you are,” says Junge.

“That’s because the first 20 minutes of sleep are very light, stage one and two of sleep, and if you sleep for longer, you are more likely to have sleep inertia, where you wake up and feel worse or take a long time to ‘wake up’ and get going. Longer naps might also affect your sleepiness and ability to sleep at night. So short, sharp naps are recommended.”

Prof Lack goes even further to suggest that the average adult should be having 10 minute power naps in the afternoon, as needed, with a few minutes added to fall asleep.

He co-conducted research in 2006 comparing no naps with naps of five, 10, 20 and 30 minute durations. The 10-minute adult nap gave participants the biggest rise in alertness with the minimal amount of post-nap grogginess.

“With the 20 and 30 minutes sleeps, performance was impaired a little bit immediately after waking up for the first half hour or so,” says Prof Lack. “But the 10 minute naps produced significant benefits in cognitive performance.”

"Stop the struggle and have a quick kip so you can be more productive at work for the rest of the day.”

The moral of this dreamy story, Prof Lack suggests, is that if someone is really struggling with sleepiness in the afternoon, it’s likely they will continue on struggling for up to 90 minutes until they come out of ‘that dip’.

“So managers should find out what’s better for the worker. Is it better for them to be below par at work for 1.5 hours [during their afternoon dip] and potentially make mistakes? Or allow them 15 minutes – five minutes to relax and fall asleep and 10 minutes of napping – to increase the productivity for the remainder of that 1.5 hours?

“Napping could be considered beneficial if you are struggling with sleepiness in the day, commonly in afternoon and have a decline in alertness. Stop the struggle and have a quick kip so you can be more productive at work for the rest of the day.”

Both experts stress that this advice is general and that sleep needs vary according to individual needs and circumstances. They recommend that people with sleep disorders consult a GP and, if needed, see a sleep specialist.

This article originally appeared on sbs.com.au and was written by Yasmin Noone