Drinking Enough Water is Life Changing

Has it occurred to you today that you are thirsty? Guess what – by the time you experience the sensation of the thirst, you are already dehydrated. That thirst is your body calling for re-hydration.

So, really, what does this mean? Why should we drink more water?

Your body is composed of roughly 60% water1. That means when we are dehydrated – and most of us spend our days constantly dehydrated to some degree – we are affecting the performance of the majority of our body. Nearly all of our systems do not function as well without the proper water intake.

  1. If you don’t drink water, you will die. It's that important. Depending on our environment, we can live only a few days without water - maybe a week. We can live much longer without food. For most of us, we should prioritize the consumption of water far more than we currently do.
  2. Prevent cancer. Yes, that’s right – various research says staying hydrated can reduce risk of colon cancer by 45%5, bladder cancer by 50%6, and possibly reduce breast cancer risk as well.7
  3. Be less cranky. Research says dehydration can affect your mood and make you grumpy and confused.3 Think clearer and be happier by drinking more water.
  4. Perform better. Proper hydration contributes to increased athletic performance. Water composes 75% of our muscle tissue!4 Dehydration can lead to weakness, fatigue, dizziness, and electrolyte imbalance.
  5. Lose weight. Sometimes we think we are hungry, when actually we are thirsty. Our body just starts turning on all the alarms when we ignore it. For those of you trying to drop some pounds, staying hydrated can serve as an appetite suppressant and help with weight loss.
  6. Have less joint pain. Drinking water can reduce pain in your joints by keeping the cartilage soft and hydrated. This is actually how glucosamine helps reduce joint pain, by aiding in cartilage’s absorption of water.
  7. Flush out waste and bacteria. Our digestive system needs water to function properly. Waste is flushed out in the form of urine and sweat. If we don't drink water, we don't flush out waste and it collects in our body causing a myriad of problems. Also combined with fiber, water can cure constipation.
  8. Prevent headaches. Sometimes headaches can be caused by dehydration, so drinking water can prevent or alleviate that nasty head pain. Next time your head hurts, try drinking water.
  9. Make your skin glow. Our skin is the largest organ in our body. Regular and plentiful water consumption can improve the color and texture of your skin by keeping it building new cells properly. Drinking water also helps the skin do it's job of regulating the body's temperature through sweating.2
  10. Feed your body. Water is essential for the proper circulation of nutrients in the body. Water serves at the body’s transportation system and when we are dehydrated things just can’t get around as well.

Quick rules of thumb for drinking water:

  • Drink half your bodyweight in ounces of water (if you weight 160lbs, drink 80oz of water each day).
  • Carry a bottle everywhere with you as a reminder to keep drinking.
  • Eat raw fruits and vegetables – they are dense in water. You can get water from food, not just from beverages.
  • Drink water and other fluids until you urinate frequently and with light color.

This article originally appeared on breakingmuscle.com

Illustration: Owlturd

5 Signs You Need a Break + 5 Things to Do About It

Work. Friends. Projects. Errands. Family. Health. Repeat. Life has put a lot on our plates, and it seems to be adding more. It is easy to get caught up in this plight of modern life, but you do not have to. Here are five things that I most typically notice and hear as signs of needing a break, and five ways to remedy them.

Signs It’s Time for a Break

1. You dread the alarm clock. Your alarm clock goes off, no matter the hour or day, and all you want is to stay crawled up in bed.

2. Your fuse is short. No matter what someone says, it is not the right thing. You are constantly triggered for arguably no real reason.

3. You avoid what you know you like. You start making excuses for not going to yoga - to that class you love - or a friend’s house you always enjoy, claiming stress and tiredness.

4. Your diet starts to waver. You start eating foods you know make you feel bad, and other foods you simply know are bad, saying, “just today.”

5. You simply do not care. You start to spend more time surfing the web at work, flipping through channels at home, ignoring messages and invites from friends, and pretending your family does not exist, all in the name of “rest” and silence.

Ways to Give Yourself a Break

1. Get offline. Turn the internet off two hours before bed, and turn your handheld devices off for at least eight hours a day. Let your mind rest, and spare it the endless stream of often unnecessary information. (This one is hard, I know.)

2. Take a local adventure. Take yourself  somewhere new or unfrequented in your city; think neighborhood walk, proper restaurant diner, bikini picnic in the park, or museum wandering. Simply experiencing something new - with different people, air, and vibe - will refresh your mind and body.

3. Plan an escape. Plan a day, week, or weekend holiday within the next six months; anything outside of and away from your day-to-day routine. Something to look forward to will add a skip to your daily step.

4. Laugh. There is really no better remedy. Cures you from the inside out.

5. Do something crazy. Go to a seemingly ridiculous class, plan a one-day escape to the beach, go out for a night on the town, or do something you think you never have time to do, or is simply nuts. The thrill will rejuvenate you.

This article originally appeared on mindbodygreen.com and was written by Lauren Imparato

 

7 Very Important Reasons To Take A Nap Right Now

Sleep is very, very good. And while it’s essential to get a solid seven to nine hours per night, when you occasionally miss the mark, a nap can help a great deal. Hey, it’s still a good idea even if you do get enough sleep.

There’s really no excuse not to nap — especially when there are so many health benefits. Curious what those perks are? Here are seven reasons why you should take a snooze right now:

1. It’ll increase your patience

Feeling frustrated? According to researchers at the University of Michigan, who published a study in the journal Personality and Individual Differences, you should probably take a nap. Participants were asked to complete a particularly frustrating task — drawing geometric designs on a computer screen. Those who took an hour-long nap before the exercise were able to draw for 90 seconds, compared to a control group who watched a nature documentary instead of napping. They gave up after about 45 seconds.

2. You’ll be more alert

Whether you’re on a long drive or trying to get through a difficult task at work, napping is a great way to increase alertness if you’re feeling foggy. A NASA study found that after napping for forty minutes pilots were more alert, and a smaller study found that after just ten minutes participants felt more alert.

3. Just thinking about napping can lower your blood pressure

While an actual nap is certainly beneficial, so is the time before you take one. One British study found that participants’ blood pressure dropped before they even fell asleep — just anticipating the nap they were about to take was enough.

4. It helps you remember more

A study conducted by researchers in Germany found that taking an hourlong nap can dramatically improve our ability to remember information. For the study, participants were asked to remember specific words and pairs. Then, half the participants watched a DVD while the other half napped. When asked about their memory of the words, the nap group performed five times as well as the DVD group.

5. It can improve creativity

If you haven’t been feeling too imaginative lately, it’s probably time to hit the hay. A study conducted by psychiatrist Sara Mednick out of the University of California, San Diego, found that people who take REM naps ― the deep sleep state where you’re dreaming ― were more creative when it came to problem solving than non-REM nappers.

6. Regular naps may help prevent heart disease

One study of 23,000 Greek adults found that people who took midday naps — a.k.a. “siestas” — were over thirty percent less likely to die of heart disease, according to The Washington Post.

“Napping may help deal with the stress of daily living,” Michael Twery of the National Heart Lung and Blood Institute said, according to the Washington Post. “Another possibility is that it is part of the normal biological rhythm of daily living. The biological clock that drives sleep and wakefulness has two cycles each day, and one of them dips usually in the early afternoon. It’s possible that not engaging in napping for some people might disrupt these processes.”

7. Taking a 10-minute rest is beneficial, too

Don’t think you can actually fall asleep? It may not matter all that much. A 2007 study, which took a look at the effects of napping versus resting, found that simply lying down for 10 minutes improved mood regardless of whether or not the person fell asleep.

What are you waiting for? Get snoozing and dream on!

This article originally appeared on huffingtonpost.com.au and was wirtten by Leigh Weingus

A Neurosurgeon’s Remarkable Plan to Treat Stroke Victims With Stem Cells

Gary Steinberg defied convention when he began implanting living cells inside the brains of patients who had suffered from a stroke.

The day she had a stroke, Sonia Olea Coontz, a 31-year-old from Long Beach, California, was getting ready to start a new career as a dog trainer. She had just wrapped up a week of training, and she and her boyfriend were taking their own dogs to the park. But something strange kept happening: She’d try to say one thing and end up saying another.

By evening, her boyfriend was worriedly telling her that the right side of her face had gone slack. She wasn’t able to focus on anything except the bedroom walls, and she wondered how they’d gotten to be so white. “It was very surreal,” she recalls.

Coontz spent the next six months mostly asleep. One day she attempted to move an arm, but she couldn’t. Then a leg, but she couldn’t move that, either. She tried to call for her boyfriend but couldn’t say his name. “I am trapped in this body,” she remembers thinking.

That was May 2011. Over the next two years, Coontz made only small improvements. She developed a 20-word spoken vocabulary and could walk for five minutes before needing a wheelchair. She could move her right arm and leg only a few inches, and her right shoulder was in constant pain. So when she learned about a clinical trial of a new treatment at Stanford University School of Medicine, she wasn’t fazed that it would involve drilling through her skull.

At Stanford, a magnetic resonance scan showed damage to the left half of Coontz’s brain, an area that controls language and the right side of the body. Ischemic strokes, like Coontz’s, happen when a clot blocks an artery carrying blood into the brain. (Rarer, but more deadly, hemorrhagic strokes are the result of weakened blood vessels that rupture in the brain.) Of the approximately 800,000 Americans who have strokes each year, the majority make their most significant recoveries within six months. After that, their disabilities are expected to be permanent.

On the day of Coontz’s procedure, Gary Steinberg, the chair of neurosurgery, drilled a nickel-size burr hole into Coontz’s skull and injected stem cells around the affected part of her brain. Then everyone waited. But not for long.

Coontz remembers waking up a few hours later with an excruciating headache. After meds had calmed the pain, someone asked her to move her arm. Instead of moving it inches, she raised it over her head.

“I just started crying,” she recalls. She tried her leg, and discovered she was able to lift and hold it up. “I felt like everything was dead: my arm my leg, my brain,” she says. “And I feel like it just woke up.”    

Coontz is part of a small group of stroke patients who have undergone the experimental stem cell treatment pioneered by Steinberg. Conventional wisdom has long maintained that brain circuits damaged by stroke are dead. But Steinberg was among a small cadre of researchers who believed they might be dormant instead, and that stem cells could nudge them awake. The results of his trial, published in June 2016, indicate that he may well be right.

“This important study is one of the first suggesting that stem cell administration into the brain can promote lasting neurological recovery when given months to years after stroke onset,” says Seth Finklestein, a Harvard neurologist and stroke specialist at Massachusetts General Hospital. “What’s interesting is that the cells themselves survived for only a short period of time after implantation, indicating that they released growth factors or otherwise permanently changed neural circuitry in the post-stroke brain.”

Steinberg, a native of New York City, spent his early career frustrated by the dearth of stroke therapies. He recalls doing a neurology rotation in the 1970s, working with a woman who was paralyzed on one side and couldn’t speak. “We pinpointed exactly where in the brain her stroke was,” Steinberg says. But when Steinberg asked how to treat her, the attending neurologist replied, “Unfortunately, there’s no treatment.” For Steinberg, “no treatment” was not good enough.

After earning his MD/PhD from Stanford in 1980, Steinberg rose to become the chair of the school’s neurosurgery department. In 1992, he co-founded the Stanford Stroke Center with two colleagues.

In the years that followed, two treatments emerged for acute stroke patients. Tissue plasminogen activator, or tPA, was approved by the FDA in 1996. Delivered by catheter into the arm, it could dissolve clots, but it needed to be administered within a few hours of the stroke and caused hemorrhaging in up to 6 percent of patients. Mechanical thrombectomy emerged about a decade later: By inserting a catheter into an artery in the groin and snaking it into the brain, doctors could break up a clot with a fluid jet or a tiny suction cup. But that treatment could only be delivered within six hours of a stroke and couldn’t be used in every case. After the window closed, doctors could offer nothing but physical therapy.

When Steinberg started looking into stem cell therapy for stroke patients, in the early 2000s, the idea was still unorthodox. Stem cells start off unspecialized, but as they divide, they can grow into particular cell types. That makes them compelling to researchers who want to create, for example, new insulin-producing cells for diabetics. But stem cells also help our bodies repair themselves, even in adulthood. “And that’s the power that Steinberg is trying to harness,” says Dileep Yavagal, a professor of clinical neurology and neurosurgery at the University of Miami.

Steinberg began testing this in a small trial that ran between 2011 and 2013. Eighteen volunteers at Stanford and the University of Pittsburgh Medical Center agreed to have the cells—derived from donor bone marrow and cultured by the Bay Area company SanBio—injected into their brains.

Sitting in his office, Steinberg boots up footage of a woman in her 70s wearing a NASA sweatshirt and struggling to wiggle her fingers. “She’s been paralyzed for two years. All she can do with her hand, her arm, is move her thumb,” says Steinberg. “And here she is—this is one day later,” he continues. Onscreen, the woman now touches her fingers to her nose. “Paralyzed for two years!” Steinberg repeats jubilantly.

His staff calls this woman and Coontz their “miracle patients.” The others improved more slowly. For example, a year after their surgery, half of the people who participated in a follow-up exam gained 10 or more points on a 100-point assessment of motor function. Ten points is a meaningful improvement, says Steinberg: “That signifies that it changes the patient’s life.” His team hadn’t expected this. “It changes the whole notion—our whole dogma—of what happens after a stroke,” he says.

But how did the stem cells jump-start those dormant circuits? “If we understood exactly what happened,” he says wryly, “we’d really have something.” Here’s what didn’t happen: The stem cells didn’t turn into new neurons. In fact, they died off within a month.

Steinberg thinks the circuits in question were somehow being inhibited. He’s not exactly sure why, but he thinks chronic inflammation could be one reason. He has a clue: After the procedure, 13 of his patients had temporary lesions in their brains. Steinberg thinks these indicated a helpful immune response. In fact, the size of the lesions after one week was the most significant predictor of how much a patient would recover.

For all 18 patients, Steinberg also thinks the cells secreted dozens, perhaps hundreds, of proteins. Acting in concert, these proteins influenced the neurons’ environment. “Somehow,” Steinberg reflects, “it’s saying, ‘You can act like you used to act.’”

Some of the participants had adverse reactions to the surgery, but not to the cells themselves. (A small European study published later also indicated that stem cells are safe for stroke sufferers.) And Steinberg says his patients’ recovery “was still sustained on all scales at two years.”

He’s now collaborating with Yavagal on a randomized controlled study that will include 156 stroke patients. Key questions await future researchers: How many cells should doctors use? What’s the best way to administer them? And are the cells doing all the work, or is the needle itself contributing? Could the death of the cells be playing a role?

Steinberg thinks stem cell therapy might help alleviate Parkinson’s, Lou Gehrig’s disease, maybe even Alzheimer’s. His lab is also testing its effects on traumatic brain and spinal cord injuries. Even though these conditions spring from different origins, he thinks they might all involve dormant circuits that can be reactivated. “Whether you do it with stem cells, whether you do it with optogenetics, whether you do it with an electrode, that’s going to be the future for treating neurologic diseases.”

Six years after her stroke, Coontz now speaks freely, although her now-husband sometimes has to help her find words. Her shoulder pain is gone. She goes to the gym, washes dishes with both hands and takes her infant son on walks in the stroller. For Coontz, motherhood is one of the greatest joys of post-stroke life. During her pregnancy, she worked out five times a week so she would be able to hold and bathe and deliver the baby. After so many medical procedures she couldn’t control, this time, she felt, “I am awake, I can see, I know how I want this to be.”

Her son is now 1 year old. “My husband picks him up and holds him way over his head, and obviously I can’t do that,” she says. “But I will. I don’t know when, but I will. I guarantee it.”


This article originally appeared on smithsonianmag.com and was written by Kara Platoni